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Abstract—Enhanced stress capacity during multiple matrix cracking in unidirectional, continuous
fiber-reinforced brittle matrix composites subjected to uniaxial tension has been investigated by
using the energy approach of fracture mechanics, in which the bridging stress of the fibers in the
matrix crack is determined by the inclusion method. The interactions among the multiple fracture,
the interfacial debonding and the frictional sliding are discussed. Theoretical predictions for the
stresses at the end point of multiple cracking and the debonding lengths have been derived. To
verify the validity of the theoretical model, an experimental study was conducted with cement-based
composites made with different volume fractions of steel fibers. The steel fiber reinforced specimens
were loaded under uniaxial tension to various pre-determined stress (deformation) magnitudes, and
then the deformations in the specimen were ‘“‘frozen™ by gluing rigid steel blocks on the specimen.
The technique of optical fluorescence microscopy was used to acquire the extent of debonding
length quantitatively from thin sectioned samples obtained by cutting the “frozen™ specimen. A
“stable growth” of debonding was observed in the study. The theoretical predictions are compared
with the experimental results and a reasonable agreement is shown.

1. INTRODUCTION

The mechanical properties of monolithic-brittle materials can be improved by high strength
ductile fibers. Enhanced stress capacity and multiple matrix cracking have been observed
from the stress—strain curve of the uniaxial tensile test for steel, glass and synthetic fiber-
reinforced cementitious composites (Shah, 1991). The toughness enhancement of the matrix
involves considerations of cracking of matrix, interfacial debonding, frictional shear resist-
ance along the fiber-matrix region and fiber bridging effect in the cracks. Typically, there
are two specified points (points B and C in Fig. 1) in the stress—strain curve to distinguish
three stages of mechanical behavior. The first matrix crack is initiated between points 4
and B, and propagates completely leaving the bridging fiber intact (if the fiber is strong
enough) when the path reaches the point B, namely the Bend-Over Point (BOP). Any
incremental loading of fibers is transferred back into the matrix which can lead to the
second matrix crack at a distance behind the surface of the first crack. Similar to the first
crack, the second crack propagates completely when the loading increases up to a certain
value. Next, the third crack initiates and propagates and so on. This multiple cracking stage
is accompanied by debonding followed by frictional sliding along fiber-matrix interfaces
on both sides of the surface of matrix crack. Point C marks the end of multiple matrix
cracking. After the point C no further cracking is expected, and the additional load is only
sustained by fibers.

A number of studies about the fracture mechanism of the fiber-reinforced, brittle
matrix composites have addressed this phenomena. Assuming that the multiple matrix
cracking occurred under a constant external load, Aveston et a/. (1971) used an energy
balance method to predict it for the unbonded fiber-matrix interface. Later, Aveston and
Kelly (1973) further considered the bonded case. Marshall er al. (1985) evaluated crack
growth for two different situations (long crack limit and short crack limit) by using either
energy balance or balance of stress intensity factor. In the present paper, a theoretical model
based on a micromechanical method (the inclusion method) has been proposed to examine
the behavior of multiple cracking and the enhanced stress capacity of the matrix. The
transverse cracking mode inside a half-space (elastic, matrix) body with periodic loads is
introduced to simulate fracture behaviors prior to and posterior to the BOP. The process
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Fig. 1. A typically tensile stress;strain response of steel fiber-reinforced, cementitious composites

with fiber volume fraction f = [.534% and fiber radius r = 0.2 mm, and the lour discrete stress
levels: (1) o, = 4.8 MPa (before the BOP): (2) 6, = 6.4 MPa (between the BOP and point ) ; (3)
gy = 7.9 MPa; and (4) o, = 11. MPa (beyond point C) are shown.

of the crack growth is considered as follows: (1) initiation and growth of a matrix crack,
(i1) initiation of interfacial debonding and shiding, and (iil) formation of complete matrix
cracking. This sequence repeats during subsequent, multiple cracking. The applied stress at
the end point of the multiple cracking (point C) is then determined.

Studies have been reported which either analyse the interfacial debonding theoretically
{Marshall and Oliver, 1987 ; Wells and Beaumont, 1985 ; Gao et a/., 1988 : Hutchinson and
Jensen, 1990 ; Nair, 1990) or inspect the debonding zones experimentally (Campbell et al.,
1990). Marshall and Oliver (1987) used the experimental measurement (fiber push-out test)
to analyse interfacial debonding and frictional sliding. Hutchinson and Jensen (1990)
used approximate closed-form solutions to model the debonding and pullout with two
idealizations of friction: constant friction and Coulomb friction. Campbell er af. (1990)
used transmission electron microscopy to observe the interfacial faiture for the SiC-whisker
toughened Al,O;and Si;N,materials. The role of the interface in ceramic matrix composites
has been recently studied by Evans er «f. (1991). Fracture surfaces were examined in a
scanning electron microscope, and numerical and analytical crack growth simulations were
compared with experimental results by Zok er a/. (1991). In the present study, uniaxial
tensile tests were conducted with steel fiber-reinforced cementitious system. After that,
the debonding phenomena were examined using the technique of optical fluorescence
microscopy (OFM). Finally, experimental results arc compared with the present theory
and other published prediction.

2. THEORETICAL BACKGROUND

Multiple fracture has been considered previously by some workers (Aveston et al.,
1971 : Aveston and Kelly, 1973 ; Marshall ¢z al., 1985). They assumed that the first matrix
crack is of prime concern, and did not consider an increase in stresses during multiple
fracture. However, a significant increase in external stresses has been observed during the
stage of multiple cracking (Somayaji and Shah, 1981 ; Mobasher et al., 1990). In addition,
the influence of energy consumed due to debonding and frictional sliding on the growth of
matrix cracking is often not included in theoretical analysis. The model proposed here
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considers the enhanced stresses during the multiple cracking stage (point B to C in Fig. 1)
as well as the enhanced toughness due to the fiber—matrix debonding and sliding.

2.1. Mathematical model

A stage of the composite after BOP is depicted in Fig. 2. A second crack of length 2a
has formed at a distance of [, +/{” from the first complete matrix crack. Note that the
length /. is determined by subtracting the extent of debonding /¥ of the first crack from
the crack spacing. It is assumed that a constant frictional stress t; is acting over the
debonding length /(. The solution of the problem is simplified by shifting the origin from
the crack surface to the place just above the debonded crack tip (Budiansky et al., 1986).
It is assumed that a second crack is in a semi-infinite domain defined by x; > 0, subjected
to a uniform tensile stress o, on the far field (x; goes to o), and a periodic stress over the
surface x; = 0 (as shown in Fig. 3). The shape of the second crack is modeled by a thin
spheroid as

xi+xd (x;—1)? c
Q,: ‘a2 2+( 362 ) <1« (1)

where a corresponds to the radius of the crack. 2¢ is the maximum width of the crack, and
length, /. is the distance from position x, = 0 to the crack center. If the number of fibers
intersected by the matrichrack Q, is N, the total bridged domain Q for the fiber in the

matrix crack is equal to ) Q. The cross-section of a typical ith fiber with a radius of r is
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Fig. 2. A schematic drawing shows that typical crack and bridged domains are simulated by

ellipsoidal inclusions Q, and Q subjected to the boundary conditions in a semi-infinite, fiber-
reinforced composite, respectively.
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Fig. 3. For the purpose of mechanical analysis, resetting the boundary condition of Fig. 2 to be a
periodic stress over the surface x; = 0 in a semi-infinite, fiber-reinforced composite is shown.

approximated as

x3 : —1)? d
Qi:fith (X3 . o) <, £<< 1. )
r c ¥

The fibers are aligned parallel to the x;-axis with an average spacing 4.

Relations between the average bridging stress of fibers in the crack, length /, and
applied stress can be derived by dividing the system into two parts (Fig. 4). The first part
is treated as a half-space elastic body subjected to the boundary conditions (external
stresses) without a matrix crack in the composite. In the second part, fictitious misfit strains
(eigenstrains) are introduced to simulate the regions of a crack and the bridging parts.
Therefore, the stress disturbance due to the crack in the composite can be calculated.
Finally, average bridging stress is determined by superposition of both parts.

2.2. Stress field in elastic part (the uncracked composite)

The isolated-cylindrical element (Fig. 5) (Wells and Beaumont, 1985; Gao er al., 1988 ;
Hutchinson and Jensen, 1990) can be used to characterize the axial stresses of a fiber and
matrix for an uncracked body in any section perpendicular to the x;-axis, if the interaction
among fibers is negligible. Because of the relaxation effect in previous debonding regions,
the interfacial shear stress 7, (bonded interfaces) above the debonding tip won’t exceed the
shear strength (Sutcu and Hillig, 1990). Consequently, no further debond can be expected.
Based on the shear lag model, solving the stresses of the fiber of and matrix o’ in the
cylindrical composite is similar to the procedure in references Hsueh (1988) and Budiansky
et al. (1986). They are given in Appendix A. From these stresses and using the criteria that
the succeeding matrix crack initiates when 6% = a,,,, the tensile strength of the matrix, one
can calculate the length /. and it is given by
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Fig. 4. The stress field in a semi-infinite composite with a matrix crack is obtained by superposition
of (1) the part of the uncracked body and (2) the part of the crack disturbance.
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Fig. 5. A schematic drawing shows the coordinate system of an isolated-uncracked element subjected
to external stresses.
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2.3. Stress disturbance due to the presence of a crack
To simulate the disturbance of the stresses caused by a crack, eigenstrains g%, are
introduced into ©,— Q (unbridged part of the crack) and Q (bridged domain) as

{ e, €Q— s, .
efh = p (4)
ag, €Q's,
where « is the factor which characterizes the crack opening in the bridged domain Q. The
factor « also characterizes the fiber sliding along the interfaces: « = 1 is a plain matrix;
a = 0 implies a matrix with complete fibers bridging, i.e. perfect bond between fibers and
the matrix ; and 0 < o < 1 if debonding and sliding take place in the interface. The value
of « is the function of aspect ratio (crack length/fiber radius), interfacial friction stress and
other material constants. To solve a problem concerning a crack domain Q, in a semi-infinite
body with fiber bridged part Q, first the stress field for the point interior to Q,
when the eigenstrain ¢, is introduced in €, is determined. Next, the stress field in Q, when
eigenstrain — (1 —a)e, is employed only in the bridged part Q is ascertained. The final stress
field for the points interior to the crack ; can then be obtained from the sum of both parts
(see Fig. 6).

The details of the formulation are given in Appendix B. This linear superposition leads
to the bridging stress of the fiber oy as

(1 —a)a/r

= l+ﬁ(a/l°)+(l“d)f(a/r) Eoa, (5)

Oy

and the value of the bridging factor o as

i a r
T T {‘ i [z”f +h (zﬂ

{3 o

where
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Fig. 6. The disturbed stress field in the semi-infinite composite with a matrix cra}f:k can be caicplated
by introducing two eigenstrains: (i) the cigenstrain g, in domain Q, and (ii) —{l—a)¢, in the
unbridged domain Q.
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and

ﬂﬂ(l —f)Em
K= (1 —NEE ™ ®

3. DETERMINATION OF DEBONDING LENGTH IN A CRACK

The debonding length is determined from energy considerations (Wells and Beaumont,
1985) and using concepts of fracture mechanics. It is assumed that when a debonding crack
propagates, the length of the matrix crack (2a) remains unchanged. It is also assumed that
all fibers associated with the debonding inside the matrix crack have identical debonding
length.

In order to use the energy approach, the debonding and frictional sliding along the
fiber—matrix interface can be treated as extensions of a debonding crack. A typical cylindrical
element (Gao et al., 1988) has been chosen to calculate the energy change when the
debonding crack grows (Fig. 7). If the stresses above the debonding front remain
unchanged (Budiansky et al., 1986), then energy changes in this isolated cell when the
debonding crack grows by an incremental amount 2zr d(/;) come from : (i) potential energy
release d Wp, which includes the increment in the elastic strain energy of fiber/matrix d Wg
and work done by external load (bridging stress) dW, ; and (ii) frictional work d Wy along
the debonding zone. The surface energy for debonding crack must be balanced by the
increment of released energy deducting the amount of frictional energy dissipation for the
system (cylindrical cell), that is

dWyt = “de—dWF

=dWL—‘dWE"’dWF, (9)
where
2 2 I
rtf ot 2 E ol
Wi=—| ——4+— — {Z}]
e 2&[ 2 =N B = (r 2rr ) (10
04
-2r
ae,| -'
1 t —Debonding crack front
1 ]
¢ | t
d 1 " f
4 t
1 1 b L, o

Fig. 7. An isolated element with debonding crack /, is shown. The energy change in this element
can be calculated if debonding crack increases d (/).
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All terms in eqns (10)—(13) are derived in Appendix C. Using the Griffith type of energy
balance, which is

oW oW W
A A, ¥ £
oQurly) ~ 7 a4

leads to a value of /; as follows :

ly or JE  (1=N)E, (o) |
S

where y* is debonding surface energy, o is given from eqgn (5) and

; 8Ey*\? ;
o1 = - )' - . (16)

Generally, the debonding process may be either a stable or an unstable growth. However,
if we consider the derivative of eqn (14), it can be pointed out that the analysis of the
present model for the debonding crack is a steady-state consideration. This is consistent
with experimental observation (see Section 6). The extent of the debonding tends to be
small if frictional shear stress 7;is large. In addition, the extent of debonding is also reduced
when the interfacial toughness y* increases.

4. FRACTURE PROCESS OF A MATRIX CRACK IN THE SEMI-INFINITE COMPOSITES

A typical matrix crack propagation in the multiple cracking range involves three critical
points : (i) complete bridging ; (i1) initiation of debonding/sliding ; and (iii) complete matrix
cracking. Each point characterizes different fracture behavior, e.g. extension of matrix
crack, interfacial debonding/sliding at a constant matrix crack length and complete crack

growth. These three cases are examined below.
Based on the energy criterion (fracture mechanics), the total potential energy W (i.c.

the mechanical Gibbs free energy), defined by the sum of the elastic strain energy and
potential energy of external loads, is first calculated as follows:

1
W= QJD 0';5'8?]' d«D_L a,’}n,-u,- ds

2

‘J‘ 0'338?];3 dV—j 0'/:}38,3‘:3 dv
Q(? Q”

IS

1+[3—;—l— +(1—a’)f -
Wy S S —
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where

T A e *
0 = 0;;+0i;, &= &;—&;,
6?3 = éaA,

—4(1—¥)a®
W, = _(3ﬂ”)ifla§. (18)

Note that ¢, is defined by eqns (B16) and (B17), and &%, is defined by eqn (4).

4.1. The state of complete bridging

For the case of complete bridging, the matrix crack is reinforced by fibers but no
debonding along interfaces takes place, and bridging factor « is equal to zero. The Gibbs
free energy and energy release rate for the extension of the matrix crack, defined by
G = —0W/d(na?), can be determined as:

W=W, ! R (19)
1+ﬂ(lf)+f~
and
2 a a
‘*5[’*(2 +<7)f]
G=G, T (20)
[ea()er ()]
where
20="a ,, ,
G, = 75 Ca. (21)

The matrix crack does not grow until the energy release rate G reaches the fracture toughness
of matrix G, (=2y), i.e. G = G_, where 7y is the matrix surface energy.Therefore, the critical
value of the external stress just before the crack extends is given by

gy |7? a a 2a . 2 a\"?
= S N O G )

Equation (22) is shown by the group of curves labeled (1) in Fig. 8. The applied stress is
plotted as a function of crack size a in Fig. 8 by using the mechanical properties reported
in Table 1(a) with the Poisson’s ratios v, = 0.3 and v, = 0.2.

Table 1. Material property values of the steel-fiber, cementitious composite systems

(at )
Mix design (by weight) (Cement : Water) (Cement : Sand : Water)
1:0.35 1:2:0.5
Curing time (days) 14 28
Matrix modulus (GPa) 14 20
Fiber modulus (GPa) 210 190
Frictional shear stress (MPa) 1.3 1.86
Surface energy of matrix (N mm™"') 0.0075 0.011
Surface energy of interface (N mm~') 0.0055 0.008

13.86 ml superplasticizer per kilogram cement was used.



1438 S-H. Li et al.

4.2. The state of initiation of debonding

As we realize from the previous section, upon the stress reaching the value given by
eqn {22), the matrix crack suddenly grows up to a certain size. Consequently, not only the
bridging action from fibers prevents the instability of the crack, but the fracture process of
matrix cracking now includes interfacial debonding/sliding as well. The situation of
initiation of debonding is a transient point to distinguish the fracture behaviors. In order
to define the critical condition, the result in eqn (15) (Section 3) could be used to determine
the threshold value of external stress for initiation of debonding/sliding with /; = 0, and it

is given by
| (8Ey*r ”2( a _a .
L e i) 23
[P £< a2 ) ]+[}lc+f}’ (3)

Equation (23} is shown by the curve-group (2) in Fig. 8. It is pointed out that threshold
stress g5 [eqn (23)] not only depends on crack size «, but also varies with the length /. [the
position of the matrix crack defined in Fig. 8 as A = f(r/l.)]. For the very first crack in the
composite, i.e. r/l, » 0, with large crack size, the threshold stress calculated from eqn (23)
is identical to the results of Gurney and Hunt (1967) and Outwater and Murphy (1969).

4.3. The state of complete matrix cracking

After the applied stress reaches the value of eqn (23), the interfacial debonding and
frictional sliding accompany the system. The energy dissipations contributed from both
effects increase the resistance to keep the crack stable. These total dissipated energies due
to sliding Wy and debonding W, (for 0 < o < 1) along the slip distances (sliding interfaces)
in a crack have been calculated previously by Li er al. (1992). They are given by

na® w(l—f)’E} a1 —a)? -
= A B e Eigl 24
Ws =2 072 120 EE° a ¢ e (24)
H‘ﬁ'/“ +(1—-2) ;jf
and
afr ®
f=1.534%
r=0.2mm
£10 F
s
|
%
<
S
E
s 5t
0 i 2 a i i N 1
0 5 10 15

External Stress [ {MPa)

Fig. 8. Relationships between external stress and normalized crack len_gth for _the cases of (1) the

perfect bond, (2) the initiation of debonding and (3) the complete matrix cracking pecome tougher

and tougher as A increases by using material properties reported in Table 1{a) with v, = 0.3 and
vy, = 0.2 for = 1.534%, r = 0.2 mm.
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na® wr(l —f)Eny* (1—-x)a t
4/2)* E A
p [1+ﬁ—?—+(1—a)§f]

where the factor 2 counts as the debonding/sliding along both the upper and lower parts
of the fibers, and na®/n(4/2)? is the number of fibers in the crack. Therefore, the energy
change rate for sliding AGs and debonding AGy, can be obtained by taking the derivative
of eqns (24) and (25) with respect to (na?), i.e.

WD=2

(25

A
AGs = d(na?)
_ S0 (=0 EnE)'aT o,
B 12E; 7 A
g {5(1 =) +2(1 —)T*A+2(1 — )T f+ 3[— al'(8x/0a)] (1 + TA)} 26
{1+TA+(1—o)Tf}* » (26)
and
_a(Wp)
A9 = na)
PSADEIE) g,
f
y {301 —)T +2(1 — o)A+ 2(1 — o)’ T2 f+ [ —al (0a/0a)}(1 +TA)} 27
{1+TA+(1—-)Tf}? > @D
where
_(0a _ 1 B (f+A+2)T+1
(aa>"r =37+ [’ [T+ A+ 20T —ax(F+ 9T ”2]’ @)
and
a r
I’=;, A=BZ. (29, 30)
The energy release rate G for the matrix extension is then given by
JoF
77 )
_ 2(1—v)at?e?
T 3ma{l+TA+(1—-a)Tf}’
X {[3+4FA+4(1 _az)ﬂ“-l-Zaf[— (%)al‘ﬂ[l +AT+(1—a) fT]
—2[14+A+(1 —ozz)ﬂ'][FA-k(l —oz)fF+f[- (g%)arﬂ}. 31

It.1 grder to determine the critical condition of complete matrix cracking, debonding
and sliding should be included in the Griffith energy criteria. It follows that

G""AGS—AGD = Gc. (32)
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With the use of eqns (26), (27) and (31), the cracking stress o, as a function of crack size
can be determined [shown by the curve-group (3) in Fig. 8]. It is noted that the applied
stress required to advance a matrix crack is dependent on crack size and length /.. Thus,
the position of a matrix crack along the fiber direction in a semi-infinite body can influence
the stress capacity of the composite.

To examine the stability of a crack in a semi-infinite body of fiber-reinforced composites
as depicted in Fig. 2, two energy criterions are set to determine crack growth: (i) G = R
and (ii) 0G/d(na®) = 0R/d(na?). The resistance R is equal to Ge+AGs+AGp, while G
stands for the energy release rate and G stands for the fracture toughness of the matrix.
When G < R, the crack remains stable; when G > R, the crack propagates but becomes
stable if 0G/d(ra®) < OR/d(na’); if G > R, and éG/d(na®) > dR/d(na), the propagation
of the crack will become unstable. This is demonstrated in Fig. 9, which represents energy
release rate G and resistance R against crack size a. As can be seen from Fig. 9, when G
reaches the value of G, the crack size begins to grow, and suddenly extends to 4,. There
is an increase in the value of resistance R from G to G-+ AGs+AGp at an extended
crack length, say a.. After passing through this transitional region at a = «., the energy
dissipations due to debonding and sliding delay the crack propagation if external stress is
smaller than a certain value determined from curve-group (3). However, when G reaches
the scale Go+ AGs+ AG),, the instability of the crack size «, occurs again.

An overall description of the fracture process of a single crack is shown in Fig. 10,
which comprises the results as depicted in Fig. 9. The derivation of curves (1), (2) and (3)
were detailed in Sections 4.1, 4.2 and 4.3, respectively. In Fig. 10, when external stress is
on the left-hand side of curve (1), the matrix crack keeps its original size ; upon the stress
reaching the value indicated by eqn (22), this crack suddenly extends to the size a,. If
external stress increases further, the interfaces start to debond and fibers continue to slip.
Finally, the matrix crack doesn’t grow until the stress is equal to the value obtained by eqn
(32).

4.4. The behavior of multiple matrix cracking

If we consider an increment of A (i.e. decrease of ), the curves (1), (2) and (3) (plain
lines) of Fig. 8 shift to the right (bold lines). It is pointed out that the toughening of the
composite increases as /. decreases. Thus, the length /. plays an important role in determining
toughness G. The process of multiple matrix cracking can be explained as follows. Consider
an infinite matrix containing an initial flaw (4, in Fig. 11). This condition is represented by
the curve-group represented by A = 0. When the stress reaches the value o,, the first matrix
crack propagates completely through the entire cross-section of the specimen (at the BOP).

(3)

G&R @)~ R= G+ AG,+ 4G,

Y

Fig. 9. Energy release rate G and the sum of fracture toughness G, frictional resistance AGs, and
debonding resistance AGy, are plotted versus crack size for the cases of (1} 64 = egn (B2), (2) eqn
(B2) < 64 < 0, and (3) , = o.,, where g, can be obtained by solving eqn (32).



Micromechanical analysis 1441

a/r

Ca

Fig. 10. Normalized crack length versus external stress for the case of (1) the perfect bond, (2) the
initiation of debonding and (3) the complete matrix cracking are shown. The path of the crack
extension in a semi-infinite, fiber-reinforced composite is indicated by the arrows.

At that time, additional load transferring from fibers to the matrix induces the second crack
L+ away from the surface of the first crack. The geometry of the composite is now
changed from infinite space to semi-infinite space with a crack inside the body. As it has
been mentioned earlier, curves (1), (2) and (3) in Fig. 8 vary with /. The propagation of the
second crack proceeds along the arrows (broken lines) as shown in Fig. 11, and extends to
infinity if the external stress reaches the value of curve (3) with increasing applied stress
from o4, to 0,,. Similarly, the curves (1), (2) and (3) of succeeding cracks, e.g. matrix crack
No. 3 etc., move further to the right of those of the preceding cracks (cracks No. 1 and 2)
when the succeeding cracks develop, i.e. as A increases. Consequently, it is implied that the
behavior of multiple matrix cracks in the composite can strengthen the ability to sustain
more stress capacity. Moreover, the process of multiple cracking in the brittle matrix
composite, which is related to its stress—strain curve (inset, Fig. 11), can be explained
entirely from Fig. 11 (the relationship between o, and a).

5. EXPERIMENTAL INVESTIGATION

This experimental part investigated the micromechanisms of matrix fracture by means
of quantitative analysis. For this purpose, uniaxial tensile tests of steel fiber reinforced
cement-based composites were conducted.

5.1. Specimen preparation
Fabrication of the specimens was achieved by using a plexiglass mold. The mold
consisted of a base plate, two side plates, two end plates and two guide plates. The guide
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Fig. 11. The schema of relationships between normalized crack length and external stress shows

that as A increases (i.e. crack spacing decreases), the applied stresses of curves (1), (2} and (3)

increase from plain lines to bold lines, respectively. The incremental applied stresses (e.g, from g,

10 0,4>), which corresponds to the stress—strain response, during the multiple cracking stage are
shown as well.

plates with 30 holes were used to provide alignment of fibers and to separate the anchorage
portion and test portion of specimen during construction. The anchorage part of the
specimen was cast with the normal type epoxy resin right after steel fibers were aligned in
the mold and fixed outside to the mold frame. Continuous steel wires obtained from Bekaert
Co. Chicago, IL, with diameters of 0.2032 mm (0.008 in.), 0.4064 mm (0.00016 in.), and
0.8128 mm (0.0032 in.) were used as fibers. Neat cement paste made of Type I portland
cement with a water/cement ratio of 0.35 was used as matrix for tension portion. In order
to facilitate the workability, 3.86 mi superplasticizer per kilogram of cement was added into
the mixture. The specimens were cast horizontally with the embedded fiber perpendicular
to the direction of casting. Three series with different fiber volume fractions, 0.767%,
1.534% and 6.135% were employed in the experimental study. For the specimen series with
0.767% fiber volume fraction, 15 steel wires with a diameter of 0.4 mm were used in each
specimen. The number of fibers increased to 30 with the same diameter (0.4 mm) of the
fiber for the specimen group of 1.534% volume fraction. Thirty wires with 0.8 mm diameter
were used for the specimen series of 6.135%. Specimens were cured in water and tested at
14-day age after the surfaces of the specimen were ground. In general, three groups of tests
were identical. No artificial crack was introduced in the specimens.

5.2. Test set-up and procedure

The specimen being held in the mechanical fixture is shown in Fig. 12. Two frictional
grips were used in the set-up. One of them was connected to the servohydraulic actuator
while the other was connected to the load cell. Two Linear Variable Differential Transducers
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Gripper
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Gripper —
Actuator

Specimen set-up

Fig. 12. Experimental set-up for the uniaxial tension test of steel fiber-reinforced cement specimen.

(1.127 mm, or 0.05 in., range), i.e. LVDTs, mounted on the opposite side of the specimen
using a 76.4 mm (3 in.) gage length were used to measure the extension of the specimen
during loading. The average output of LVDTs was also used as the feedback signal in the
control of the servohydraulic system. The uniaxial tensile tests were performed at a rate of
0.000762 mm per minute. Once the specimens were loaded up to the designated displacement
level, the mode of the control was switched to force-signal control and a command of
holding position was selected at that time. The switching of the control mode was necessary
due to the need to remove LVDTs from the set-up. After demounting the LVDTs from the
specimen, two rigid steel blocks (50.8 x25.4x 12.7 mm) were glued onto the opposite
surfaces of the specimen by using a fast hardening epoxy to “freeze” the opening dis-
placements of matrix cracks at that stress value. When the epoxy adhesive hardened, the
specimen was unloaded and removed from the MTS machine. The data of load elongation
and stroke were acquired through the TestsStar software in the controlling work station.

5.3. Study of optical fluorescence microscopy (OFM)

To quantify the debonding properties of the loaded specimen with the minimal amount
of disturbance, the “strain freezed” specimens were treated prior to the study of thin-
sectioned samples in an optical microscope. The specimen length was first trimmed off to
the section restrained by the steel blocks. Then, the epoxy impregnation procedure (Fig.
13) for the specimen was performed by using low viscosity epoxy (LR white resin from
Polysciences, Inc., Warrington, PA) and hardener mixed with fluorescence dye. The dis-
solution of the dye in epoxy utilized a less viscous medium for transporting the dye into
the debonding zone. After impregnation, specimens were then cured at room temperature
for 24 hours. The thin sections were prepared by sectioning the specimens longitudinally
and grinding using grit size of 320, 400 and 600 with a non-aqueous polishing lubricant.
Lapp cloths impregnated with diamond paste of 6 um, 2 ym, 1um and 0.25 ym were used
in the final polishing of the samples. Figure 14 shows schematically the preparation pro-
cedure of thin sections.

The polished thin sections were examined with a fluorescence microscope and an image
analysis system to quantify the debonding behavior. It was ensured that the fluorescence
dye together with LR white resin would penetrate into the interface if there exist a debonding
crack. As an illustration, Fig. 15(a) shows two bright (upper and lower) lines along the
boundaries of the fiber and matrix which directly characterize the size of the debonding
surface. On the other hand, no dye penetration is observed for the case of bonded interface
as shown in Fig. 15(b). Furthermore, in order to observe an entire contact area of the
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Fig. 13. Schematic drawing of the impregnation procedure.
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Fig. 14. Preparation of the thin sectioning: (1) load and hold the specimen to specified level, (2)
glue steel blocks on the specimen, (3) remove excess material and perform the epoxy impregnation
for the specimen, (4) section, grind and polish, (5) mount on the glass slide and (6} grind and polish.



Micromechanical analysis

Bonded interface

Debonded mterface

BT SR A R o

Steel fiber

Bonded interface

Debonded interface ’

Fig. 15. INustration of the different view for debonded and bonded interface after impregnation:
{a) a typical debonded interface (f = 1.534% and 5, = 6.4 MPa for the first matrix crack) and (b)
a typical bonded interface (f = 6.135% and ¢, = 4.2 MPa for the first matrix crack).

Fig. 16. View of the entire debonded area after taking out the fiber with /' = 1.534% at 6, = 6.4
MPa for the first matrix crack.
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Bonded interface

Debonded inerface |

Fig. 17. Photographs of thin sections show that development of the debonding length for the first

matrix crack with the increase of the applied stress as f = 1.534% : (a) Debonding length observed

at o, = 4.8 MPa {dash line (1) in Fig. 1}; (b) Debonding length observed at o, = 6.4 MPa [dash

line (2) in Fig. 1.]; {c) Debonding length observed at ¢, = 7.9 MPa [dash line (3) in Fig. 1]; and
(d) Debonding length observed at o4 = 11. MPa [dash line (4) in Fig. 1].
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Fig. 17. (continued).
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Fig. 18. An interface observed for the second matrix crack at ¢, = 7.9 MPa with f = 1.534%. The
debonding length is shorter than that observed in the first matrix crack [Fig. 18(c}] for the same
stress level.

Fig. 22. The view of the groove interface for the first matrix crack of a specimen with /' = 6.135%
at o, = 6.1 MPa {6, < ¢5°7 = 6.92 MPa). Very small debonding area is observed as compared to
Fig. 18(b) for the close siress level.
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debonding interface clearly, the fibers were taken out from the thin sections. A typical view
of debonding zone after removing the fiber is shown in Fig. 16. The different brightness
along the groove (fiber-matrix interface) of Fig. 16 is detectable to identify both the bonded
and debonded regions. The transitional position (the ending zone of debonding) was decided
using an OFM, which was used to place images from the thin sections into an image analysis
system. Consequently, quantitative measurement of fracture process zone (debonding
length) was achieved from that image.

6. EXPERIMENTAL RESULTS AND COMPARISON WITH ANALYTICAL PREDICTIONS

The methodology described above was applied to three series of specimens
(f = 0.767%, 1.534% and 6.135%), loaded up to specified values summarized in Table 2.
A typical stress—strain curve of fiber volume fraction 1.534% is shown in Fig. 1. The four
discrete loading levels (1), (2), (3) and (4) are indicated in this figure. For the steel fiber
reinforced cement composite, a history of matrix cracks can be observed during the testing.
Studies of OFM have revealed the growth of debonding at the fiber—matrix interface for a
series of stress levels as shown in Fig. 17, where four debonding lengths at four discrete
loading levels (shown in Fig. 1) are demonstrated. This observation is a typical one of fibers
existing within a bridging zone. An increasing debonding length with respect to the applied
stress observed from the micrographs proved the validity of the theoretical assumption of
“stable growth” for the debonding crack.

It is also noted that the debonding lengths in the first few preceding cracks were longer
than those in the succeeding cracks for the same stress level as can be seen by comparing
Fig. 17{c) and Fig. 18. Such a phenomenon implies that the debonding length is a function
of length /.. However, the difference in debonding length among the latter preceding and
succeeding cracks tends to become smaller. This can be explained as follows. As the load
increases, the formation of new matrix cracks results in a decrease in the crack spacing,
and then debonding growth is influenced by the crack spacing. The predicted dependence
of the normalized debonding length for the first few matrix cracks with external stress (see
Appendix D) is shown in Fig. 19 for f = 0.767% if a/r » 1 is considered. Analytical resuits
agree well with the experimental measurement as shown in Fig. 20. The predicted results
were obtained by using the material properties reported in Table 1(a) with v = 0.3 and
v = 0.2, where surface energy of the matrix y = 7.5 N m™~', surface energy of the interface
7* = 5.5 N -m~' and frictional shear stress 7, = 1.3 MPa are from Li ef al. (1991) and Jenq
and Shah (1985). The analytical relationships between normalized debonding length and
fiber volume fraction from eqn (15) for the first crack (plotted in Fig. 21) implies that the
debonding behavior is more sensitive when the fiber volume fraction decreases (e.g.
f < 2%). The experimental observation of the present study shows that debonding phenom-
enon is retarded when fiber volume fraction increases [compare Figs 17(b) and 22].

Two sets of experimental data are evaluated for the external stress at the end point of
multiple cracking. The results are listed in Table 3 with the analytical prediction determined
by recursive computation between eqn (3) and eqn (D10) (see Appendix D). The first set
of experimental results is from the present study. The second set is provided by Somayaji
and Shah (1981). The predicted values were obtained by using the mechanical properties in

Table 2. The discrete loading levels for different vol-
ume fractions of steel fiber-reinforced cementitious
composites

Stage of stress level

Fiber volume fraction {(MPa)
(%) @G @ 3¢ @
0.767 2.2 3.1 33 38
1.534 48 64 79 110

6.135 42 61 110 180
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Fig. 19. Theoretical relationships between external stress and normalized debonding length with
1 =0.767% and r = 0.2 mm for the first five matrix cracks are shown by using material properties
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Fig. 20(a). Theoretical relationship between external stress and normalized debonding length
{f = 1.534% and r = 0.2 mm) for the first matrix crack compares with experimental data points
& associated with crack No. | at discrete stress levels (shown in Table 2).
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Fig. 20(b). Theoretical relationship between external stress and normalized debonding length
{f = 1.534%, r = 0.2 mm) for the second matrix crack compares with experimental data points &
associated with crack No. 2 at discrete stress levels (shown in Table 2).
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Fig. 20(c). Theoretical relationships between external stress and normalized debonding length
{(f = 1.534%, r = 0.2 mm) for the third and fourth matrix cracks compare with experimental data
points & and O associated with cracks Nos 3 and 4 at discrete stress levels (shown in Table 2).

Table 3. Comparison of predicted stresses at the end point of multiple cracking with
experimental results

Stress at EMCY
Curing time vi Fiber radius  Predicted = Measured
Specimen set (days) (%) (mm) {MPa) (MPa)
A 14 0.767 0.2 7.11 4.1
{present study) 1.534 0.2 8.91 8.77
6.135 04 10.07 9.61
B 28 1.841 0.6 7.60 6.24
(Somayaji et al.) 2,761 0.6 9.29 8.06
5.522 0.6 7.38 7.44
2.454 0.8 8.70 7.65
3272 0.8 11.46 10.38

+EMC denotes the end point of multiple cracking.

1 For the first matrix crack

Ga= 9MPa

a 1
- 80 F
S
g 60 F
g
-4

8 8

I " )

" PRET ) I
0 001 002 003 004 005 006 007
Fiber Volume Fraction f

<o

Fig. 21. The relationships between normalized debonding length and fiber volume fraction at
different stress levels for the first matrix crack are shown by using mechanical properties in Table

1(a).
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Fig. 23. Normalized debonding length as a function of external stress (/' = 1.534%. r = 0.2 mm)
for the first matrix crack is shown by using material properties reported in Table 1(a). Comparison
of present study and HJ’s model with experimental data points & at discrete stress levels.

Table 1(b). It can be seen that the theoretical predictions for the stress at the ending
point of multiple fracture provide reasonable agreement with experimental data except for
f=0.767%.

Another model to determine the debonding length for the case of constant friction
proposed by Hutchinson and Jensen (1990) (HJ) has been used to compare with exper-
imental results and the theoretical prediction described by eqn (15) for the case that the
first matrix crack size is large, i.e. a/r > 1 and r/l, > 0. This comparison is shown in Fig.
23. According to the model in the present study and that of HJ, the debonding lengths
denoted by /; and ['" are determined respectively as follows :

I 1 E. (1=f)E. (oY |
la _oal {1 _|SE A=) (f:‘> } (33)
roo 2t f E E Oa
. . 8Ey*\"*
o = for = f(’?) ) (34)
and
HJ i 1/2
lao _oa !:I(l _ GAH”) i = L (%I_Em_vj q (35. 36)
r 2'(( C3f Oa C r

where o is the applied stress of initial debonding for the present study and o4 is for the

HJ model. The nondimensional constants ¢, and ¢, are functions of E,,, E;, v,, and v,
(Hutchinson and Jensen, 1990). Figure 23 indicates that the deviation of the threshold
stress of initial debonding predicted by the present work and HJ’s model is quite small.
This suggests that the effect of Poisson’s ratio is not significant for the stress at initial
debonding in the steel-fiber, cement-based composite. Furthermore, for the higher loading
the analytical predictions of present work are closer to the experimental results than those
of HJ’s constant frictional model. The HJ model overestimates the debonding length. This
may be attributed in the absence of frictional consideration for the HJ’s model, to when
the jump condition in the fiber stress from above the tip to just below the tip is evaluated.
Mathematically, it can also be demonstrated that the value of eqn (33) is smaller than that
of eqn (35) when applied loading is large. Since eqn (33) has an extra term of order
(oa/7)""?, which is a result of the frictional sliding effect. Therefore, it is evident that the
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resistance of frictional sliding in the fracture criterion (energy balance analysis) plays an
important role in determination of the extent of the debonding and cannot be ignored.

7. CONCLUSIONS

In the multiple cracking stage, fibers suppress the extension of matrix cracking through
three effects: fiber bridging, interfacial debonding and frictional sliding. Debonding and
sliding absorb part of the fracture energy. These effects are examined and formulated as
enhanced toughness (increasing resistance) to the composites. The proposed relationships
between the applied stress o, and the crack size a (Fig. 11) present the stability of a typical
crack in the multiple cracking region and can explain the relationship between fracture
process of multiple cracking and the stress—strain response of the composite. It is also
shown that the interaction of two adjacent cracks is dependent on crack spacing. The
amount of mechanical energy absorbed by interfacial debonding and frictional work in the
multiple fracture increases the stress capacity. In turn, more cracks and the decrease in
crack spacing are expected. With reference to the mechanics of debonding along fiber—
matrix interfaces, it implies that the debonding can be suppressed by increased interfacial
toughness, increased frictional shear stress and increased fiber volume fraction. The tech-
nique of OFM has been successfully used to observe and measure the interfacial failure in
the steel fiber-reinforced cement composite. Finally, the predictions of the model compare
favorably with measured values. It is shown that the extent of the debonding is a steady-
state process rather than an unstable growth.
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APPENDIX A. FIBER/MATRIX STRESSES IN THE ISOLATED-CYLINDRICAL ELEMENT AND
DETERMINATION OF THE LENGTH /,

Based on the shear lag model, the stresses of the fiber ¢! and matrix o7 in the cylindrical element of a
composite (Fig. 5) are given by

E E, -z
a,‘-‘:-E—faA+[a}’—fraA]exp —\/q;-, (A1)
and
m En , In(rr) ,
A_Pm oA oA Emo s
O = E, o7 —2(0mlr=s2 E, or) s (A2)
with
A _ Oa~[(1=En/E) /= (L =/)/In f(E./ED)lot
Tnla-sz = T+ (=73 f | 4
{0)
ol = oa ~21,~1d—_, (A4)
S !
[(0>
= 2 ff) s (AS)
and
2E/E; (A6)

T T =N+

where 2’ is the distance parallcl with the fiber’s axis from the plane of debonding crack tip x; = 0 (Fig. 5) and ¢
is the far field stress. /{” is the previous debonding length in the first crack. v, is Poisson’s ratio of the matrix, f
is the volume fractlon of the fiber. E; and E, are Young s moduli for the ﬁber and matrix. E, defined by
E = fE;+(1—))E,, is Young’s modulus of the composxte The stress in the fiber ¢ is related to the interfacial

shear stress 7, based on the equilibrium condition dof/dz” = —21,/r at all posmons along the fiber’s axis. Thus,
a combination of the equilibrium condition dof/dz’ = —21,/r and eqn (A1) gives the interfacial shear stress 1, in
the form of

T, = %( EraA)exp ﬁf (A7)

As mentioned earlier, the succeeding matrix crack does not initiate until the matrix stress reaches the critical
value 6,,,. This ultimate strength depends on material properties and fiber volume fraction (Aveston et al., 1971).
Combining eqn (A2) and this criterion, the length /. can be determined as

L, —1 (AGA/f+ BoF —a,y,)
x_ Al PR A8
r \/n’"[ B(o? —o7) ] (A%)
where
E
of = FOn (A9)
S (A10)

T O+A=Nn]
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and

[1+(1—f)/1n N (A1)

If o4 goes to infinity, the asymptotic value of the length /, from eqn (A8) will approach a constant value, i.e.

B=

Uwm _—!. [ _ DE ]
; —ﬁln[ BA—NE. | (A12)

where

D= A+B[£f (Al3)

APPENDIX B. DERIVATIONS OF BRIDGING STRESS AND BRIDGING FACTOR

The stress disturbance due to the presence of inhomogeneity (e.g. a matrix crack) in a body subjected to
external stresses can be simulated by an eigenstress caused by a fictitious misfit strain (eigenstrain) in the body.
This kind of equivalency is called the equivalent inclusion method (Mura, 1987). In this study, the eigenstrain g,
is introduced to simulate a matrix crack without the region of fiber bridging and another eigenstrain ag, is to
simulate the region of a crack bridged by fibers. In order to find the stress in Q, caused by a uniform eigenstrain
&%; = ¢, for a semi-infinite body shown in part (i} of Fig. 6, we define Green’s functions G,;(x,x’) satisfying the
following equations (Mura, 1987) : for x; = 0,

CipetGmi (%, X") +8,,0(x,X") = 0; (B1)

on x3; =0,
CijkIka.l(x’ x/)"j = dim0s(X, X’), (B2)
where C,;, are the elastic moduli. The Einstein summation convention for the repeated indices is employed. 6(x, x")

and é,(x,x’) are the three and two-dimensional Dirac delta functions, respectively. They have properties as
follows:

J: FO)3(0x, %) dx' = f(x), (®3)

and

j Fx8,(x,x) ds(x’) = f(x). (B4)

Green’s functions G;;(x,x’) for the half space isotropic medium have been derived by Mindlin (1953).
Therefore, the displacement u;(x) due to &}, = £, in domain €, is written as

2
U; (X) _[[mﬂ an‘ Gu (x X )dx

d
=Je ,G dx’ + 2, J‘ —G;; dx’, BS
J‘ a i MP Dax3 3 ( )

where 1= 2j17/(1—-2%); g and ¥ are the average shear modulus and Poisson’s ratio of the composite, both
determined by the law of mixtures. The ¢;;(x) component of internal stress in domain Q, is in the form of

633(x) = (A42) (55— 8,) + ey, +822)

2
11— v(u,1+u22)+ 2-(1 V)(u33—¢,)

_ ) I
- {W_‘gv?’m[—m_, 109 =27 12(0)~2(1 ~7) 55(x)+ WL x —x'.)[R—?l - ’L(’—‘%]dx'

1 30— . (1-v) 8
v j (ram x:)[ & x3)]d (v'V)R,[, o[<_1+4v)( )

3(x;—x%) , 817 iV _
+ xR?"’ ]dx _ 8 - i ]}-{—{4”(1_”2‘:)"(1_6)[—2v(3—4l7)[‘l“.,(x)+‘!"zz(x)]

— 403 [W 51 (X)W 32, (0)]+ 2(1 = V) (3—47) W 55(x) —4(1 =)W 33(x) —4(1 —V)x3P 535(x)

b}
6x,j (x~x)¢ dx’ +—J (x2—x%)¢ dx + v) o no¢dX’]}, (B6)
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where
RY = (2= x7) 4 (0 =55 + (x5 - x5)%, (B7)
R3 = (x, =x) +(x;~x0)7 + (3 +x5)7, (B8}
O(x) ld"f’} Id’ (BY, 10}
X} = | -—dx’, x)= | —-dx/, A
o, R ( o, R» '
o (=48 6xs(xs+x5) | 6xyxy 3G —4V)(xi—xy)
oX) = RT T ORY TR
30x3x5(x; +,>;’3)’3 N 41— (1 —2¥) . AU =71 = 20)2R, + x5 + x5 )(x;5 +x75) (BI1)
R} Ry(Ry+x: 4277 RI(Ry+xy+x3)°
1 1 1 3 —47)(x; +x3)°
p(x,x) = 81 =9’ ~3(—47)] +2x3(~ E T b I
Ry/3 Ry/1s 2/.333 R:

In the right-hand side of eqn (B6), there are two terms quoted within two pairs of curvy braces. Physically, the
first term in the right of eqn (B6) leads to the solution of infinite body case, and the second term can be treated
as the residual term caused by opposite traction of the first term on the surface x, = 0. The eigenstrain ¢, in Q,
causes a non-uniform stress o;;(x). In order to provide simplicity, the average internal stress (o330 in Q, is

taken as
) (ITCE, ay
(ol = A,T‘,%;-ﬂ[wﬁw)(;-)} (B13)

where “¢ )" denotes the average and the domain is defined in subscript. S(v) is a factor determined from the
second term of eqn (B6) through numeric calculation, and the value of power # must be not less than 1. If we
consider the average forms in Mori and Tanaka’s theory (Mori and Tanaka, 1973), the average stresses {c;;»"

in Q and G, — subjected to a uniform eigenstrain %, = — (1 —2)g, in  [part (if) of Fig. 6] are shown as follows
. el —a)e, )
(ol = (=N (Bl4)

S Ame(l —a)e,

2= (BI3)

<0'33>é52 e

Consequently, the stress disturbances (o™} in bridged part Q and {o}*"> in unbridged part Q,—Q caused by
the eigenstrain ¢%, are the sum of eqn (B13) and eqns (B14)—(B15). They are given by

(aPy = oy, -0

R i Y _ Sine(1—a)g,
‘*Z(Iﬁv-)a[“"ﬁ(‘)(zc)] T P (B16)
and
(aP* ) = {033)n
S L. PPN A Y Gl
——2“”‘.,}&[11“3(1)({()]'%(1 ) 20=%)r (B17)

The value of &, for fibers inside the matrix crack calculated by the traction-free condition in the crack surface is
given by

2(1 —¥)a

. - £ BIS
» = el + Blaily + (=) f @] = > (319
where
Fe [1 + %ﬁ %z exp #\,g;ﬂ. (BI9)
. £

Based on the assumption of this model that the size of the matrix crack bridged by fibers should be larger than
the fiber radius and for moderately small fiber volume fraction, the bridging stress 67 can be obtained and
simplified from the linear superposition of the uncracked part and disturbance part, which is

(I —w)afr

- e s B20
T By < (== f (@) O (820

ay

Provided that the bridging stress o placed upon the fibers must be greater than zero as a/r goes to 0. the value
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of # can only be 1. In addition, it can be pointed out from eqn (B20) that o depends on crack size, length [, and
applied stress. But the factor « is still undetermined in this equation. If the slip region is considered near the crack
surface, the axial stresses in a fiber o¢(z) and matrix ¢,(z) can be obtained by the force equilibrium with the
assumption of constant frictional shear stress ;. They are given by

6¢(2) = op—2; (f) (B21)
oulz) = 2% 1_{7 (f) (B22)

where z is the distance measured from the crack surface parallel with the fiber’s direction. The tensile strains in
the fiber and matrix are o/ E; and o,/ E,,. Therefore, displacements of the fiber Uy(z) and matrix U,,(z) are obtained
by integrating the strains with respect to z. These are as follows:

i 4 2
S PV PPN ¥
U(z) = j E dz = E (-2 I:}( r ) (B23)
4 2 2
| g S (=
U“'(Z)—J;Em dz——Em l—f( - ) (B24)
The slip distance / of the fiber is determined by using the condition &, = ¢;at z = /, which is
_({i~f)or Ea
l— ——'-"2” 7 E r. (st)

Consequently, the crack opening U,y for both sides of the matrix crack can be obtained by calculating the
displacement difference between the fiber U;(z) and matrix U,,(z) at the crack surface plane, i.e.

UCQd = Z(Uf'_ Um)lz:@

_ (A —NIrEn/E { (1—a)ajr } £,

2w E [+ Bla/l)+ (1 —a)(a/n f]

(B26)

Referring to the equivalent inclusion method, the crack opening displacement U, is equal to 2cue,. It implies
2cag, = 2(Us— Uy, =o. After some algebraic manipulation, the bridging factor « can be determined as

1 a r a P aVl?
e {1+;[2x+f+ﬁ(z)]-—{{l+ ;[2K+f+ﬁ(l)]} -—4x(f+rc)(;)} } ®27)

. il ~E,
T 8t (1 -NEE

where

Eaa. (B28)

APPENDIX C. ENERGY CHANGES WITH THE EXTENSION OF A DEBONDING CRACK

A cylindrical model is proposed to simulate a fiber-matrix element in a crack. The size of matrix crack
remains unchanged when the fiber starts to debond up to /. Therefore:

(i) The strain energy in the fiber and matrix

nr? [ S m? [l
Wg=_—1 ofdz+ " — | 63d
g j TN 28, )

wiifd  E I3 _or Il oV
"2 {imﬁ*;?* W) 0

and

6WE
dWE = m 21rrd(ld)

..f_tﬁ o 4 E/LV orfl .
= iE, [;’:‘T + —(1 ) “E:;(;) -41—{ v 2nrd(ly). {C2)

Here, the contribution of matrix shear deformation is ignored. However, if the matrix is much more compliant
than the fiber, the matrix shear deformation may be taken into account in d Wy (Piggott, 1987; Penn and Lee,
1989; Zhou et al., 1992) ;



1458 S.-H. L1 et al.

(ii) The work done against the frictional sliding

4
Wy = 2nrrrf (U—Uy)dz
0
1 14 oy I}
— 4,22 e 2, U1 td
inr Trf[(l—f)Em +fEer2 +nrite E 1
and
oW,
dWe = 3Gl 2nrd(ly)

ref 2 E (1, or Iy )
ZE[*‘(“ITJSE ( ) +— . (r):| 2nrd(ly) ;

(iii) The work done by the bridging force

Wy = —n’ZUT(Ur_UmN::u
i [ E or ld
B E; at (l —f)E T r

2nrd(ly)

and

d
dwi = d(2nrly) 1)

_ I 0'12- 2 E or R .
-—Z—ET[ +(1—f)E Tf( >] 2nrd(ly) ;

(iv) The surface energy created by debonding is

W = 4nry*l,,
and

OW,.
0Q2nrly)
= 2y*  2mrd(ly).

AW, =

< 2nrd(ly)

APPENDIX D. THE PROCESS OF INTERFACIAL DEBONDING GROWTH

If we consider a/r > 1, the values of a, o1, G, AGs and AGy, can be simplified as follows:

(i) The factor a, i.e. eqn (6), becomes

x= 2(f+ %)
and
oo
= 0;
(ii) The bridging stress o from eqn (5) becomes
(1 —a)goa

or(alr» 1) =

Bl +(1—a) f

[eralg) H{r(g) [~

(C3)

(C4)

(C5)

(Co)

(€N

(C8)

(DD

(D2)

(D3)

(iii) The expressions of AGs, AGp and G can also be simplified by substituting eqn (D2) into eqns (26), (27) and

3D

ST 4 2AT 4 2(1 — )T/

AGs = G =0 1 A+ (1~ T/

&Eal,

BL+2(1 — )2 f +2AT7

AGp = Cy(1—a) 3 TA+ (-0l Ca,

Qa4+ S)2f+2A0°f

201 =) 2+ 2A0f

+(1—%)

3r+5A2+2AT3
GZG{ + +(1—a?)

(+TA+({—-aIfT [+TA+(—of /]

[1+TA+(1—-)Tf]?

(D4)

(D3)

PP
}C OAan

(Do)
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where
_fU=f)Edr
G= 121, E. E? 07
1—f)Eay*
¢, =LALEr ©8)
2(1-79)
C= " (DY)

The first complete matrix cracking stress g, (see Fig. 11 for definition) can be solved from the following equation
by inserting (D4), (D5) and (D6) into eqn (32), and letting A = 0 (#/[, - 0)

A+(1-a)/] A+(1-a)f]
TP R (P

_ce Af+AA—a) P+ (1+a)] ,
f!

C,t%03 T 02+ Cyé y=0. (D10)

The debonding length /, in the first crack is a function of applied stress o, by substituting o [eqn (D3) with
A = 0(r/l, - 0)] into eqn (15), that is

li oal SE  (1=)E, (04 17
R SN} ®1D

* 2
o = f(SE” )” . (D12)

where

r

When applied stress reaches ,,, the debonding length /$® and the length /, between the first and second cracks
can then be determined from eqns (D11) and (3). Similarly, the second matrix cracking stress o,, is obtained by
solving eqn (D10) and letting A = f(r/l.). Also, the debonding length in the second crack as a function of applied
stress can be calculated from eqn (15), where o7 is given by (D3) with A = B(r/,). The matrix cracking stress and
debonding length of the succeeding cracks (e.g. crack Nos. 3, 4, etc.) can be determined by using this procedure.
During the stage of multiple cracking, the increment of the applied stress decreases as the number of cracks
increases. Consequently, when the applied stress reaches the ending point of multiple cracking, the matrix cracking
propagates into a set of blocks and the crack spacing turns into a constant value. Each of the curves shown in
Fig. 19 represents the debonding length at a given crack (1, 2, 3,..., etc.).



